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Saint Petersburg Institute of Fine Mechanics and Optics,  Saint Petersburg Institute of 

Informatics and Automation of the Academy of Sciences of Russia. 

 

A new method of analysis of fractal dynamics, which realizes 

conversion and compression of the data obtained with the help of 

“GDV-Camera” firmware complex, is studied.  The techniques of 

picture typification and classification are developed on which 

basis the converted and compressed data are subject to a 

discriminant analysis.  System MathCad operators’ notation is 

used in the work mainly.  

 

 

Introduction 

 
It is well known [1,2] that electrical self-activity of the organism generated by complex 

nonlinear and nonequilibrium dynamic systems are fractal by its nature, i.e. possessing the 

scale invariance property.  The same nature have the processes of induced electrical activity 

and, in particular, the processes which enable the GDV-images of fingers.  The fractal 

structures of this kind processes may be investigated in different ways. May be studied 

Statical Images, i.e. the resulting picture of Gas Discharge Visualization as a photograph or a 

television shot.  However, another way may be used – “dynamic” investigation, i.e. 

examination of “genesis” of the same image, by means of fragmentation of this shot into a 

number of lines-ovals (pic.1) enclosed one into another, and investigation of an energy 

component of each discrete value of the corresponding oval (its brightness) and, what is 

especially important, analysis of its information component, a certain length of radius-vector 

crossing some discrete values (pic.2).  Here the length is the number of illuminated pixels – 

image elements, crossed by the radius-vector, drawn at a fixed angle to a chosen oval [3].  

The length defined in such a way would depend upon the angle of radius-vector, drawn from 

a fixed image center.  This line-oval image dissector gives an opportunity to examine 
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dynamics of the process of image formation in time and space.  We used the decomposition of 

GDV-image into 8 lines-ovals, each of which was also digitized according to 0,35156 0 

degree of rotation of radius-vector.  As a result, two vectors F1<j> and F2<j>, sized 1024 x 1 

each, are formed for each of the ovals.  At that, F1 – characterizes the energy component, and 

F2 – the information component, j − is the number of oval evaluated within the limits 0…7 (j 

∈ 0,1,..7).  Using the operation of columns connection, the two data matrixes F1 and F2, sized 

1024 x 8 each, containing the information about the GDV-image, may be created.  These data 

will be converted and compressed according to the method of fractal dynamics analysis.    

 

The method of analysis of fractal dynamics. 
 

This method was developed for the EEG analysis [4] and later applied for the analyze of the 

GDV-images of fingers [5].  The core of the method is the investigation of the dynamic power 

spectra of the initial process’s fragments.  For the purpose of their description the two-

parameter mathematical models are constructed, where one of the parameters is the energetic, 

and the other − informational. The estimation of the parameters on the basis of nonlinear 

regression is constructed and the dynamics of their change from one fragment to the other is 

monitored. These changes are evaluated by means of singular decomposition of the 

corresponding matrixes.  The final result of these conversions and estimates may be 

compactly presented in terms of a certain resulting vector sized 6 x 1.  The two vectors of this 

kind are formed as a result of F1 and F2 matrixes conversion and compression respectively. 

Let us discuss the method’s realization in more details. 

 

1. Conversion and structuring of the initial data. 

F1 and F2 matrix columns undergo the operation of folding into a matrix sized 128 x 8. For 

example, F1<0> null column of F1 matrix fold into A0 matrix: 

A0 = fold (F1<0>) 

Schematically the fold operation is shown on the diagram: 
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As a result of this procedure instead of F1, F2 matrixes we get A0, A1, A2,…A7 and B0, 

B1,…B7 matrixes respectively. 



 3 

2. Fast Fourier transformation (FFT) of the columns of A and B matrixes. 

C0 <i> = FFT (A0 <i>) ,           i = 0..7, 

D0 <i> = FFT (B0 <i>) ,           i = 0..7 

Here the symbol <i> means the number of the corresponding column of the matrixes A0, B0. 

These conversions result in vectors with the complex components, which determine 

spectral constituents of the processes.  It is worth mentioning that in case we take up such a 

procedure in MathCad program, because of the property of complex conjugacy of the 

constituents MathCad system deduce in fact only a half of their number.  This means that with 

the A0 <i> vector dimension equal to 128, C0 <i> will include 64 constituents only. 

3. Calculation of the power spectra. 

To get the required power spectrum of the segment of A0 <i>, or B 0 <i> oval, it is 

necessary determine respectively: 

CM <i> = ⏐ C0 <i> ⏐2 ,       i = 0..7, 

DM <i> = ⏐ D0 <i> ⏐2 ,       i = 0..7 

Examples of the specific power spectra of the required processes are shown on fig.3,4.  

It is obvious from the pictures that the power spectra change considerably from one segment 

of an oval to the other and from an oval to another oval, respectively.  In order to describe 

these changes mathematically within fractal approach it is necessary to use the model of 

spectral envelope which is usually applied in such cases. 

4. Evaluation of parameters of the model of power spectral envelope. 

The simplest model of such class is the following: 

M (n) = k . n - 
β ,         (1) 

where n is the component’s number in the power spectrum proportional to its frequency,  

k and β − energy and information parameters subject to evaluation.   

Let us take into consideration a simple formula [1] linking the fractal degree d and the 

fractal index β: 

d = 
2

5 β−          (2) 

It is also advisable to remember that digitization frequency fd of the process and frequency of 

the corresponding n-spectral constituent fn are connected by the following relation: 

fn =
m
n  . fd ,         (3) 

where m is the number of components in A0 <i> , B0 <i> vector.  In our case we have m=128, 

this is why if fd =128 is chosen, fn = n. 
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For the estimation of k and β parameters it is necessary to solve the task of non-linear 

regression which can be easily reduced to the linear at the first stage.  Let us demonstrate the 

procedure. As usual, comparing the object (here it is the corresponding power spectrum) to 

the model we receive the system of equations: 

CM <i>
n = k . n- 

β ,    n = 0..63,      (4) 

where CM <i>
n  is the n-component of CM <i> vector.  Applying logarithm to the both parts of 

(4) we get: 

ln(k) - β. ln(n) = ln(CM <i>
n)        (5) 

Let  x10,i
A0 = ln(k0,i

A0) ,  x20,i
A0 = β0,i

A0 , 
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then in the vector-matrix form we receive the following systems of equations: 

U. XA0<i> = VA0<i> ,   i = 0..7 ,    (6) 

for which we would have the next solutions: 

XA0<i> = (UT. U)-1.UT.VA0<i>,  i = 0..7     (7) 

For the computational convenience let us assume: 

VA0 = [ VA0<0> VA0<1> VA0<2> … VA0<7>] , 

i.e. VA0 is a matrix of 28 x 8 in size, then the decision matrix is given by : 

XA0 = (UT. U)-1.UT.VA0        (8) 

Having transposed it (upper index T) we receive XA0T matrix, where the column with zero 

number includes the evaluation logarithms of parameter k: 

XA0T)<0> = 
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and, accordingly, the column with number one is the evaluation vector of parameter β: 

(XA0T)<1> = 
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Taking into account that in (9) by definition each component is 

x1i,0
A0 = ln(ki,0

A0) ,        (11) 

it is not difficult to get the evaluation vector: 

K0 =
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⎥
⎥
⎥
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        (12) 

Thus, for A0 matrix all the estimates of parameters of model (1) are received in the 

form of vectors (10) and (12).  In the same way, using the relations (6)-(12) it is possible to 

get the estimates of the required parameters k and β for the rest matrixes A1…A7, B0…B7.  

Arranging the received evaluation vectors into the corresponding matrixes, let us find the next 

four matrixes of evaluation of the parameters: 

βA = 

⎥
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⎥
⎥
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⎢
⎢

⎣

⎡
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 ,     (13) 

KA = 
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⎥
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⎥
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βB = 
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KB = 
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It is worth recalling that the family of matrixes A (A0…A7) is generated by the data 

matrix F1, and the family B (B0…B7) − by the data matrix F2.  The four matrixes found (13)-
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(16) contain valuable information about the fractal dynamics of the processes studied − about 

genesis of GDV-images of fingers.  This is why these matrixes may be called the information 

matrix. 

 

5. Conversions of the information matrixes. 

 

The goal of these conversions is the necessity to find some integral estimates which 

could serve as the most informative features of the investigated GDV-image of finger and 

could help to solve the problem of identification of this image’s type.  Such estimates have 

been found. There are three of them for each information matrix (13) − (16): 

• integral average, 

• normalized standard deviation, 

• maximal singular number. 

Let us study these estimates in more detail in terms of βA matrix.  If we determine a 

mean value for each column of this matrix: 

βAm
i = mean (βA<i>) ,     i = 0..7,       (17) 

we would receive a vector of means for all the columns: 

βAm =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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ср
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1
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.

.

β

β

β

         (18) 

For this vector (18), in its turn, it is possible to find a mean value, which can be called 

“integral mean”: 

βAint.m = mean (βAm),        (19) 

where mean  is the operator defining the estimate of mean value of βAср. vector components.  

The normalized standard deviation is determined as the ratio of standard deviation to integral 

mean: 

βAн ско =
)(
)(

ср

ср

Amean
Astdev
β

β
 ,       (20) 

where the operator stdev determines the standard deviation of βAm vector.  Any information 

matrix may be presented in terms of βA matrix as: 

βA = Q Σ WT ,        (21) 
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where Q and W are the unitary matrixes, and matrix Σ is diagonal, moreover its diagonal 

elements σii  are non-negative square roots of the characteristic values of βA. (βA)T matrix, 

and, hence, are defined uniquely.  The columns of Q matrix are the characteristic values of 

βA. (βA)T matrix, and the columns of W matrix − the characteristic values of (βA)T. βA 

matrix.  Both systems of characteristic vectors are organized in accordance with the 

distribution of the characteristic values (for instance, in ascendancy).  Diagonal elements of Σ 

matrix − σii are called singular numbers of βA matrix.  The columns of Q and W matrixes are 

named, respectively, left and right singular vectors and the decomposition (21) is called 

singular decomposition.  The latter possesses [6] a remarkable property: any matrix is 

conditioned ideally relative to the problem of calculating singular numbers, however, at that it 

can be poorly conditioned relative to the problem of evaluation its characteristic values.  The 

vector of diagonal elements (singular numbers) of βA matrix in the MathCad pack is 

determined through the operator svds: 

ZβA = svds (βA)         (22) 

and, hence, the maximal value of singular number is found in the following way: 

ZβAmax = max (ZβA)         (23) 

Drawing some conclusions we may say that as a result of the analysis of fractal 

dynamics, compact integral estimates brought together in Table 1 are obtained. 

     Table 1. 

Integral fractal estimates of the GDV-grams. 

Energy 

Estimates (F1) 

Information 

Estimates (F1) 

Information 

estimates (F2) 

Energy 

estimates (F2) 

KAint.m βAint.m βBint.m KBint.m 

KAн сао βAн ско βBн ско KBн сао 

ZKAmax ZβAmax ZβBmax ZKBmax 

 

The estimates placed in the 1st and the 3rd columns, as shown by the practice of their 

application, represent the GDV-image in the best way when the problem of identification of 

its type according to the classification of types proposed by K.G.Korotkov [7] is being solved.  

Therefore, therein after the following evaluation vector is used: 

O I = [βBint.m , βBн ско , ZβBmax , KAint.m , KAн сао , ZKAmax ]   (24) 

This fact states that from the total number of combinations of 12 to 6, equal to 924, one 

optimal combination is chosen, meaning minimum of errors of the image type identification. 
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The method of identification of the images type. 
 

Five types (classes) of GDV-images of fingers proposed by K.G. Korotkov, obtained 

with the help of “GDV-Camera” apparatus were evaluated: K, R, L, N, S (pic.5,6). A standard 

discriminant analysis procedure in STATGRAPHICS program was applied.  The components 

of vector (24) were used as the informative features.  11 objects were taken for each class. 

Two ways of identification were investigated: 

• using the arrangement of types (classes) into groups, 

• without grouping the classes. 

Classes were distributed between two groups as follows: R, L, N and S, K.  The result 

of identification of objects using the educative sample for the first group: 

L-type  −  81 % of correct identifications, 

R-type  −   90,9 % of correct identifications, 

N-type  −  100 % of correct identifications. 

Group average result  −  90,9 % of correct answers.  For the second group, using educative 

sample, 100 % of correct identification was achieved.  

If we do not distribute the types of objects into the groups, we would have five classes 

of objects and the following result of correct identification was received: 

L-type  −  63,64 %, 

R-type  −  72,73 %, 

N-type – 100%, 

S-type – 72,73%, 

K-type – 72,73%, 

which gives an average percent of correct identifications − 76,36 %.   

The coefficients for the five classifying functions are reduced to CC matrix: 

CC = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−−

−−

0129.00049.02559.00004.0942.239217.81
018.00226.02491.00016.0942.175666.96
0264.00101.03881.00017.0084.214539.103
0199.0006.03393.00013.0194.2713856.97
0281.00058.03941.00016.0829.245293.98

 

The value of the classifying function CF is determined as the product of CC matrix by vector 

(24) plus CONST vector calculated from the analyzed data: 
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CONST = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

1125.82
744.89
897.102
209.111
247.106

,       CF = CC . OI + CONST   (27) 

To make decision of classifying the object it is necessary to keep with the rule: 

Arg  max CFj ,  j = 1..5       (28) 

 j 

This means that a maximal component of CF vector is being found and its number points to 

the number of the class, to which the program refers the object.  In our case there were the 

following numbers of classes: 1st − L, 2nd − R, 3rd − N, 4th − S, 5th −K.  For example, 

according to the results of MathCad-program work, one of the 55 investigated objects had OI 

vector equal to: 

OI = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1.964
583.0
83.92
3.147

348.0
444.1

  ,  

which, in compliance with (27), gives the next value for the classification of CF function: 

 CF = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

912.105
443.103
544.108
665.109
849.109

 , 

whence it follows that max(CF) = 109.849, which means that the object is referred to the 1st 

class (L-type) by the program.  This result is correct.  In general, the results of identification 

may be considered satisfactory. 

 

 

Conclusion. 
 

The method proposed, as well as the algorithm and the complex of programs, written in 

MathCad and STATGRAPHICS packages language, give an opportunity to solve a practical 

problem of automatic identification of GDV-image type with a satisfactory reliability.  It is 
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worth mentioning that the results achieved are not considered to be possible down to the limit 

(for the fidelity of identification).  There are yet some unused reserves, and also the ways of 

their realization.  At the same time, the level achieved is characterized by the following 

important features (novations): 

 

• the information component of image is actively equipped (uncovered and used), 

optimally combined with the energy component, 

 

• in the process of solving the problem the main emphasis was laid not on the 

upgrading of the identification algorithms, but on the preparation of data intended for  

identification: data structuring, fractal dynamics analysis, selection of informative 

features, which at the same time provided with powerful data compression, the latter 

in itself is very important not only for the medical purposes, but also for the purposes 

of telemedicine, 

 

• programs realizing the method are written in the language of a well-known 

MathCad package, which gave an opportunity to spare the time and reserves of 

programmers considerably on the stage of method’s processing; at that, the main 

mathematical instrument was vector-matrix analysis and mathematical statistics [6,8]. 
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