
A model to rsplain the relaxation behitvionr of it biophoton sign4 is developed. The 
model assumes that e\cry biological system is endowed with a non-classical electromag- 
netic field in a squee& state. The ~u~~ntu~~ evolution of the state determines the shape 
of the signai. It is illustrated by considerin, ‘1 the evolution of a single mode field de- 
scribed by a frequency stable damped oscillator. The model predicts a relaxation behav- 
iour in the form rr(/) = B,, + &( I + i.,,r) ‘. The coctlicients 13,) and B: depend upon the 
initial state of the Geld and are situation specific. The constant i,, is determined by the 
di~t~pil~~ of the field and is qstem specific. Tho model explains in a natural way two 
characteristic features of biophoton signals. namely non-exponential decay of light in- 
duced emission and constant tlus of spontaneous emission. The model is applied to 
the light induced photon emission in llowers of Ttrgc~.s Pm&r. The value of the dam- 
ping coetlicient 4, in this system is found to be (0.040 2 0.011)s ‘. 0 1998 Published 
b> Else\ier Science Inc. All rights reserved. 

hLllC Light 

~~v~n~ systems ~~~~~~~~~LIQL~sI~ emit photons of ultra weak intensity in the vis- 
ible range + * io~hl~tol~s [ 11. The bi~phot~l~ signal de 



many environmental and physiological factors. The shape of the signal and its 
dependence upon these factors rule out the origin of biophotons from chemi- 
luminescence. bioluminescence. fluorescence and super fluorescence [l-3]. 
The origin and source of biophotons [4] are yet to be established. The phen 
enon of biophoton emissio 
induced [2,5]. The photon 
for hours. The flux is ultra 
tors approaching the quantum 
duced emission is more intense but lasts only for a short while 151. The 
signal decays to the level of spontaneous emission in a few minutes. The decay 
has a non-exponential relaxation behaviour [6]. The strengths of the decaying 
signal vary from system to system. The light induced emission is more intense 
in ~h~~tosyllthetic systems. The peak intensity of the signal is 2-3 orders of 
magnitude higher than the intensity of the signal in a spontaneous emission 
[7]. The experin~ent~l data have been parametrized using ml~lti-exponenti~ls 
[8,9]. hyperbolic [IO] and other types of functions [I 11. Constant flux ’ 
taneous emission and non-exponential relaxation behnviour in light 
emission are two unexpiaibled characteristics. It is di%cult to incorpor 
in existing models. One requires a new approach to understand biophoton 
emission. Such an approach is presented in this paper in which both features 
emerge in a n~~tur~~~ rmd ~lnif~ed manner. 

We envisage that every livinp system is endokved with an endogenous elec- 
The field is in a part: qu~~l~tun~ state. The qLl~ntu~~ state is 

;I squeezed state of the photon Gth titne dependent parameters. The state 
evolves in a dc~nite manner. The evolution determines the shape of the signal. 
It is assumed that the state of the bioph~~t~n field and its dynamics can be rep- 

o earlier mcnti 
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CO and squeezed states [13.14] of radiation are typical exa Id 
wit classical nature. The expectation value of the photon a- 
tor oherent state of the electromagnetic field is non-zero e- 
pendent. A detector will find a constant photon flux in such a field. The 

n signal will not exhibit any decay or relaxation be 
Reid in a squeezed state exhibits relaxation behaviour 

laxation behaviour arises from the quantum evolution of the field and in gen- 
eral it will not be exponential in character. The nature of the relaxation will be 
determined by the interaction of the field with the biological system. In the ab- 
sence of the explicit knowledge of the form of this interaction, we assume that 

emission. 
The presence of a quantum field in a living system is desirable for model 

bu~iding. Such a field may be responsible for the long range spatio-tempo~l 
erence and co-operative behaviour of living systems f4]. The uncertainty 

in either of the two cailonical conjugate variables [14] in a squeezed state can 
osen over a wide range of values. One can adjust the degree of coherence 
he extent of delocalization of the field. Further. the uncertainty in one 

vari~~ble can be made very small. As a result, squeezed state is more suitable 
for sigrl~~l conlmunic~~tion and information transfer. If the biophoton field 
has some role in signal comn~ullication. then the field in a squeezed state could 

onary selection. 
ntuna state of the field depends upon endogenous and exog- 

nal light is an exogenous factor. It can stimulate most liv- 
ing systems by alterin g the state of their associated biophoton field. The 

~~~lt~ltn evolution of the altered field is different, so that the stimulated system 

sible for s~ont~~neous biopho 
nt term represents the relaxation ~haviour. The relative strength 

of the two terms varies from system to system and depends upon physiological 



and environmental conditions. The uncertainty product of photon and mo- 
mentum operators is also calculated us in the model. The field comes out 
to be very close to a minimum uncer nty packet and shows only a small at- 
tenuation in time. We have determined the variance of photon number t 
about the nature of photo count statistics. As an i~lu~t~~tion. the m 
applied to our meaurements of light induced ultra weak photon emis 

owers of Tqytcs Pcmrka and the damping parameter for the system is 
estimated. 

2. 

A single mode free electromagnetic field of frequency PI is described by the 
harmonic oscillator 

&, = 4 (rIz_~z f I/I;. ? (1) 
where s and I>, are canonically conjugate position and rn~~lnel~tu~~~ variables re- 
lated to electric and magnetic field components. The classical equation of mo- 
tion is 

The system on qu~l~ti~~~tioI1 gives creation operator a. and ~~nnibi~~~tio~~ op- 
easurable qu~tiltities are expressed with t 

The ~~~l~ltltuti~ state 
nt operators. Number states. co- 
two photon coherent states) are 

A squeez 
state of 

Of 

si 
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ex the measurable quantities in the squeezed state ca 
cu Ip of Eq. (5). We give below the values of photon 
(rr). uncertainty product Ax-Ap, and Q = (A&) - (n) as [19,20] 

Q = 21rj“ + jr\’ -i- 21/il’(4)rl’ + 3)]r[’ - 2 Re(/~“‘pr)(4]~l’ + 1). (8) 
edrosa [21] has shown that coherent states of an oscillator with time depen- 

dent damping and mass term, are equivalent to the squeezed states of the free 
oscillator. The dynamics of a time dependent harmonic oscillator is governed 
by the following equation [17] 

s a position variable. i.(t) a time dependent damping coeffkient and 
ime dependent frequency term. The system has a quasi particle inter- 
on quantization. It is similar to the free field description in which 
re replaced by quasi particles. The uasi particle operators h(r) and 
time dependent and determined 71 by the solution of Eq. (9). 

Iso determines the evolution of a st e. It is such that an eigen state 
e dependent operator h(t) continues to remain in its eigen state with 

same eigen value 1171. It resembles the evolution in a unda 
herent state remains a coherent state with the same 

. Operators h(r) and h’ (t) are related to photon operators by a 
linear unitary trallsforln~ltion. As a result. a coherent state of the quasi particle 
is also a squeezed state of the photon. A squeezed state of the photon evolves 
into another squeezed state in the dynamics given by Eq. (9). 

anl~in~ usually alters the mode frequency. If damping is time dependent, 
e frequency also varies with time. Variable frequency is not desi~b~e if 

ssign a role to biophotons [I .2j in signal communication and in 
e biological integrity of the system. One, therefore, imposes the 
frequency stability. It is achieved by taking [16] 

real constant. It gives the damping 
system for any stable frequency (:I now becomes 

(IO) 



f.J= p? 

2( 1 + &t)’ 
+ i ( I + &,t)%y2. vu 

The solution of Eq. (9) for the above damping is easily obtained. Following 
Jannussis and Bartzis [ 173 we express the quasi particle operator h(t) in terms 
of the quasi particle operators at t = 0. It gives 

h(r) = /c(t)!?(O) + \*(t)h*(O) (12) 

with 

- I -~- SlII CJf. 
W( 1 t if,!) (14) 

The state of the field at t = 0 is an eigen state of a quasi particle operator h(0) 
and contains illforn~~ltion about the living system and its en~fironment. If the 
field at t = 0 is taken to be in a state j/L /l,,. v,~) with /j. jli,. and vCt as inpllt param- 
eters, then 

The state I/L j(,). v,,> will evolve [I91 into another state j/i. /cr. ~,)e”~““. Since the 
(I) of the state does not enter our calculations it need not be deter- 

mined. We can determine the parameters /cr and 11, by noting that t 
title operator h(r) of the evolved state is given by 

h(t) = /l&l -t- V,(i’ . (16) 

SL~bstitutin~ Eq. ( i 5) into Eq. ( 12) we o 

p, = p(1)& -i- V(f)Y,1) (17) 
and 

\‘, = /l(f)\‘,, + Y(f)& (18) 
The evolved state is an e&en state of operator h(t) 

k(t)/& & V,) = /~l/i./l,. 1;). (19) 
~1~~SU~~~l~ antities. relaxation 

c~lcii~~tit~~ t time de nce of the 
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expectation value of the photon 
expectation value is given by 

number operator in the state of the field. The 

(da) = ((A &. \*,lC~-alp. I’,. p,). (20) 
The right-hand side of Eq. (20) is evaluated by first inverting Eq. (16) and then 
using colllmutatioll relations and Eq. (19). The result has non-oscillatory as 
we99 as oscillatory time dependence. The non-oscillatory part determines the re- 
laxation or decay behaviour. It has terms of the forms (1 + &a)-’ and 
( I + id)- ‘. The oscillatory part occurs with frequency CO and is too fast to 
be observed. It is averaged out by integrating the expression over a time inter- 
val 2n/~. The variation of (1 + ;.,,I) during integration over the interval k/to 
can be ignored beyond t > I /to. This condition is satisfied in biophoton emis- 
sion where the frequency is in the optical range (W x 10”s”) and measure- 
ments are made beyond t = 1 ms [Xl. The expectation value @+a) averaged 
over the fast mode gives the number of photons n(r) detected at time t as 

n(t) = B,) c - 

y--he COPtlitir-b- _...,.c:lts !I,,, B,, and B2 are explicit expressions of i. and parameters /I, 
jllr and Q. The parameters are situation specific and may depend upon many 
factors. The values of the coefficients may nge from experiment to experi- 
ment. Since we are unable either to prepa r choose a system with its field 
in a known squeezed state, it is difficult to extract meaningful information 
about the system from these coethcient In contrast. i.,, is insensitive to the 

t may provide significant information 
about the system. alysed to estimate its value. 

i,! can be determined from the measurements of /t(r) provided it is less than 
90”’ 5 I. This restriction arises because for i.0 > 10”s’ and t > I ms, one can 
replace (9 + i,,f) by j.,,! and can absorb i.,, in the coefficients BI and Bz. The er- 
ror in the replacement is less than 0.1%. Besides, the system will relax very 
quickly for large values of i.(, and one will observe only a constant flux given 
by the contribution of B,,. If i.,, < 10% I, then one can construct a dimension- 
less parameter i,,,/c~~ which is less than 10 “. It can be used as an expansion pa- 
rameter. The expansion of Eq. (21) in this parameter has terms upto fourth 
order 0119~ i.e . . . 

(22) 



It is independent of t and produces a constant flux of photons. Co gives a dom- 
inant contribution to n(t) provided /\‘,,I > &,/co or l/j/ > &/CIJ. 
IVO/ and I/$ become of the order of &/c~J, then the expansion terms in Eq. (22) 
need to be rearranged. The rearranged expansion is given by 

Eq. (24) gives leading order contributions to the three coeticients of Eq. (21). 
B. and B2 are non-vanishing but Bl vanishes in the expansion upto the order 
(i,,/UJ)'. 

We point out that Eq. (24) is the only observable decay behaviour of the 
biophoton field in our model. It has a (I + ior) ’ term along with a constant 
rate of photon emission. The strengths of decaying and constant terms depend 
upon the choice of parameters. For example if IL,, 2 1, I’~) = -iio/(3cs) and 
/j = 0. then the constant component of the flux becomes zero. Similarly for 
the choice /11, = 1. v. = 0 and /j arbitrary. the contribution of constant terms 
is never less than the contribution of the decaying terms. In this choice the state 
of the field at t = 0 is a coherent state of the photon. Eqs. (23) and (23) can be 
combined in a single formula for pher.omenologicai analysis. It gives /z(r) as 

u(t) = B,, f ----=-T. 
( 1 + i,,t)- 

(25) 

Gu [3] has also obtained similar espression in an excipies model after several 
approximations. Our approach is much simpler and tractable. 

fhe uncertainty product is calculated using Eq. (7). We give the result for 
the field initially in a coherent state evolvin g into a squeezed state. It has 
\*(l = 0 and gives 

where 

(27) 



he oscillatory behaviour has not been integrated out in the above expres- 
sion. The contribution of Q(r) is very small for i:Jcr~ < 1. The uncertainty 
product of the packet does not grow with time and it remains nearly a 
minimum uncertainty packet. It does not suffer appreciable attenuation due 
to quantum evolution. It can, therefore, be used for eficient signal transmis- 
sion and communication [l&19]. The behaviour of the uncertainty product 
for the field initially in a squeezed state (Vet # 0) is given by a more complicated 
expression but is similar to the case v(~ = 0. We have also determined the nature 
of photon statistics by calculating Q with the help of Eq. (8). Q is non-zero but 
small. It indicates that the distribution is not strictly Poissonian. However, the 
deviations are small. 

Eq. (2s) is our main result which explains the two distinct types of biopho- 
ton emission in a unified framework. Eq. (25) has three unknown parameters. 
One parameter (B,, or f&) is fixed by the normalisation of the data.This leaves 
us with only two free parameters i. and &I& to fit the experimental data. It is 
valid for every biological system. As a result, gross features of biophoton emis- 
sion in all systems are similar. 

The model predicts a constant flux of biophotons in time for t < j.0’ or 
B. > &. This is an important feature of our model. It has not been predicted 
so far. All biological systems exhibit this feature of constant flux in spontane- 
ous biophoton emission. Energy emitted in biophoton emission is supplied by 
the metabolic activities of the system. The mechanism of energy transfer from 
the living system to its field is unknown. We have modelled only a part of the 

amiitonian that gives the evolution of the electromagnetic field. This part has 
an explicit time dependence and it alone cannot conserve energy. Energy con- 
servation is ensured by the living system as a whole, which is responsible for the 
existence of the field in a squeezed state. 

The model contains a relaxation behaviour of the from (1 + j.,,t)-’ for 
& > B,,. This is the only form of relaxation behaviour occurring in our model. 
Such beh~~viour was observed in immerous systems [3.6,22.23]. These observa- 
tions led to the idea of frequency stable damped oscillator initially in a classical 
model [16]. We have borrowed the form of damping and formulated a quan- 
tum mechanical framework for understanding biophoton emission. The frame- 
work correctly gives the observed decay behaviour. It may be noted that a 
non exp~~tlential decay rules out the origin of the biophoton from uncorrelated 
excited states of subsystems or from chemical reactions. 

The parameters B,, and Bz depend upon the quantum state of the field and 
are holistic in character. They need not be extensive variables. They depend up- 
on physiological and environmental factors. The dependence has not been 
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quantified so far. Changes in biophoton signal with physiological or environ- 
mental conditions have been observed [23]. Our model attributes these changes 
to the values of &, and B:. The detailed shape of the biophoton signal is. 
therefore, situation specific. This is a unique feature of our model and it o 
a possibility to use the biophoton signal as a tool in extracting inform~ltion about 
physiolog&l and environmental factors affecting the system. Using the biopho- 
ton signal it may be possible to discriminate among biological samples (carrot. 
milk, egg, etc.) produced or reared under different conditions from the same spe- 
cies or stock, where chemical or biochemical techniques fail to differentiate [24]. 

As an illustration, we fit in our model the light induced biophoton emission 
data measured by us in a non-photosynthetic system namely. flower of Trrgctcjs 
Perth. Nine flowers varying in colour and size were plucked randomly from 
different plants. The light induced photon emission was measured continuously 
for 200 s in the Photon Image Acquisition System (PIAS. MAMATSU). 
The details of the experimental set up and actual proced have been de- 
scribed elsewhere 181. The signal became very weak after 200 s and approached 
the regime of constant tlux. The measurements were repeated after every hour 
for 6 h and subsequently once a day for next seven days. We measured the re- 
laxation behaviour of each flower I4 times, spread over 8 days and obtained a 
total of 126 different sets of data. The data of each set was analysed assuming a 
single exponential decay, double exponential decay and our model (Eq. (Z-5)). 
The parameters in different models were determined by niitlinlisitl~ the chi 
square, I?, function. A single expotle~lt~~~~ decay gave a large value of chi square 
and could not reproduce the shape of the signal. A single exponential decay 
cannot represent the biophotonic signal. The decay with two exponentials 
was parametrized by 

n(r) = El exp( --E.,t) -t E2 cxp( -i2t). (28) 
where El. E?. i., and L, are constants. h Eqs. (25) and (38) are able to 
reproduce the shape of the signal and g similar values for chi square. Chi 
square per degree of freedon wds around I.2 in various sets of data. The values 
of B,, were small and neg le. The values of the coetliciznts El. E2 and B1 
were different for different ers. Even for the sane flowers the values of these 
coefficients decreased with time. The decrease indicated de~r~d~itioli of 

ower after ~luckitl~. The values decre~lse~i bv two orders of ~,~~~n~t~~de in eight 
days. Perhaps. they can 
of the system. One expects 

e ~~~nl~u~t of de~r~,d~~t~on 
e data from i 26 decays gave 

d E.2 = (0.015 i. 0.003) s ‘. 
he term corresponding to i.1 is d~~t~iitl~lnt in the two ex~otletiti~~l decay model 

tuit~ed a si~t,~~c~~t~tly larger standar deviation in its detert,,~ti~ti~,,i. 
The values of i.,, and i.2 ~vere-di~t~ib~tted t~or~l~liy. but the values of iI were 
not. It suggests that Eq. (2X) may simply be a p~lr~~rnetric fit while Eq. (25) 
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The quality of our fit is indicated in three representative cases in Fig. 1. T 
number of photons detected in each second is plotted as a function of time 

after 10 s exposure of the flower to white light. Photon counts were 
measured every 3 s. Observed points are joined by continuous lines, Predictions 
of the model are depicted by dotted curves. The flower was plucked from a 
plant and kept in a sample holder inside the laboratory. The three cases corres- 
po::d to the measrn-eme:;ts with the s a , e Rower on the first. fourth and eighth 17 
day of plucking. The data are well reproduced in these cases in our model. It is 
also true for all other sets of data. Agreement of the data in our model is par- 
ticularly good for fresh flowers el~atlatin~ a strong signal. Deviations are pro- 
nounced in weaker signals where the signal to noise ratio is less than 2. Our 
model correctly reproduces the shape of the signal t\ 1 rer, after the decrease in 
its strength by two orders of magitude due to natural degradation. 

The model propose s a new framework to represent and explain biophoton 
cmiGm data. We feel that the eariier data showing non-exponential decay 
should be I-e-examined in this framework and future experiments should 
pl~ln~e~i to deterl~iine the dependence of the coefficients of the model on phys- 
iological and envir~~n~lie~tal factors. 

Non-classical nature of biophotonic light is an important assumption of the 
model. It can be established by determining photo count statistics and by per- 

periments. Photo count statistics was determined 
e region of constant in a few systems. The distribution was non-ther- 

mal and mostly Poisscnian 161. We have also measured the probability of zero 
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photon emission for a time interval ranging from 10 ,ns to 10 ms in light in- 
duced biophoton emission from photosynthetic systems [3S]. The rn~~s~lrill~ 
conditions were arranged in such a way that the difference in the predictions 
of thermal and ssonian distribution w maximised. Our data agree wit 

results are ~~n~ub~ished so far. 
-classical nature or the biopho- 

ton field. We thus we three different types of measurements performed on dif- 
ferent systems using di rent detectors indicating the existence of non-classical 
light. Perhaps, the biophoton field is indeed in H squeezed state of light. 


